11 research outputs found

    Dual Design PID Controller for Robotic Manipulator Application

    Get PDF
    This research introduces a dual design proportional–integral–derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chien–Hrones–Reswick (CHR)  technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption

    Evaluation of Single and Dual image Object Detection through Image Segmentation Using ResNet18 in Robotic Vision Applications

    Get PDF
    This study presents a method for enhancing the accuracy of object detection in industrial automation applications using ResNet18-based image segmentation. The objective is to extract object images from the background image accurately and efficiently. The study includes three experiments, RGB to grayscale conversion, single image processing, and dual image processing. The results of the experiments show that dual image processing is superior to both RGB to grayscale conversion and single image processing techniques in accurately identifying object edges, determining CG values, and cutting background images and gripper heads. The program achieved a 100% success rate for objects located in the workpiece tray, while also identifying the color and shape of the object using ResNet-18. However, single image processing may have advantages in certain scenarios with sufficient image information and favorable lighting conditions. Both methods have limitations, and future research could focus on further improvements and optimization of these methods, including separating objects into boxes of each type and converting image coordinate data into robot working area coordinates. Overall, this study provides valuable insights into the strengths and limitations of different object recognition techniques for industrial automation applications

    Design and Develop a Non-Invasive Pulmonary Vibration Device for Secretion Drainage in Pediatric Patients with Pneumonia

    Get PDF
    The study aimed to develop a non-invasive pulmonary vibration device, specifically tailored for pediatric patients, to address a range of pulmonary conditions. The device employs a PID control system to ensure consistent and precise vibrations. The primary contribution of this research is the successful development, testing, and implementation of this innovative device. Utilizing technical components such as an Arduino, a vibration DC motor, and an ADXL335 accelerometer, the device was engineered to deliver stable and continuous vibrations even when subjected to external pressures or interactions with the patient. Controllers, including P, PI, PD, and PID types, were rigorously compared. The Ziegler-Nichols tuning technique was applied for meticulous evaluation of vibration control specifically within the context of this non-invasive pulmonary vibration device. Our findings revealed that the PID controller displayed superior accuracy in vibration control compared to P, PI, and PD controllers. Clinical trials involving pediatric patients showed that the PID-controlled device achieved treatment outcomes comparable to conventional methods. The device's precise control of vibration strength provides an added benefit, making it a well-tolerated, non-invasive treatment option for various pulmonary conditions in pediatric patients. Future research is necessary to assess the long-term effectiveness of the device and to facilitate its integration into standard clinical practice. In summary, this study represents a significant advancement in pediatric pulmonary care, demonstrating the critical role that PID control systems adapted for non-invasive pulmonary vibration devices can play in enhancing treatment precision and outcomes

    Comparative Study of Takagi-Sugeno-Kang and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control for Self-Balancing Wheelchairs

    Get PDF
    This study examines the effectiveness of four different fuzzy logic controllers in self-balancing wheelchairs. The controllers under consideration are Type-1 Takagi-Sugeno-Kang (TSK) FLC, Interval Type-2 TSK FLC, Type-1 Mamdani FLC, and Interval Type-2 Mamdani FLC. A MATLAB-based simulation environment serves for the evaluation, focusing on key performance indicators like percentage overshoot, rise time, settling time, and displacement. Two testing methodologies were designed to simulate both ideal conditions and real-world hardware limitations. The simulations reveal distinct advantages for each controller type. For example, Type-1 TSK excels in minimizing overshoot but requires higher force. Interval Type-2 TSK shows the quickest settling times but needs the most force. Type-1 Mamdani has the fastest rise time with the lowest force requirement but experiences a higher percentage of overshoot. Interval Type-2 Mamdani offers balanced performance across all metrics. When a 2.7 N control input cap is imposed, Type-2 controllers prove notably more efficient in minimizing overshoot. These results offer valuable insights for future design and real-world application of self-balancing wheelchairs. Further studies are recommended for the empirical testing and refinement of these controllers, especially since the initial findings were limited to four-wheeled self-balancing robotic wheelchairs

    Exploring ResNet-18 Estimation Design through Multiple Implementation Iterations and Techniques in Legacy Databases

    Get PDF
    In a rapidly evolving landscape where automated systems and database applications are increasingly crucial, there is a pressing need for precise and efficient object recognition methods. This study contributes to this burgeoning field by examining the ResNet-18 architecture, a proven deep learning model, in the context of fruit image classification. The research employs an elaborate experimental setup featuring a diverse fruit dataset that includes Rambutan, Mango, Santol, Mangosteen, and Guava. The efficacy of single versus multiple ResNet-18 models is compared, shedding light on their relative classification accuracy. A unique aspect of this study is the establishment of a 90% decision threshold, introduced to mitigate the risk of incorrect classification. Our statistical analysis reveals a significant performance advantage of multiple ResNet-18 models over single models, with an average improvement margin of 15%. This finding substantiates the study’s central hypothesis. The implemented 90% decision threshold is determined to play a pivotal role in augmenting the system’s overall accuracy by minimizing false positives. However, it’s worth noting that the increased computational complexity associated with deploying multiple models necessitates further scrutiny. In sum, this study provides a nuanced evaluation of single and multiple ResNet-18 models in the realm of fruit image classification, emphasizing their utility in practical, real-world applications. The research opens avenues for future exploration by refining these methodologies and investigating their applicability to broader object recognition tasks

    Robotic Arm Design and Control Using MATLAB/Simulink

    No full text
    This research focuses on leveraging the capabilities of MATLAB/Simulink and Arduino microcontrollers to develop a control system for a robotic arm intended for medical and industrial applications. The arm's structural framework consists of three motors, each connected to adjustable resistors to form a comprehensive servo motor system. By integrating these hardware components with software solutions, the study aims to create a flexible, precise, and reliable automation system. The system's position and rotational control are executed through an Arduino microcontroller, which communicates with a computer running MATLAB/Simulink software. This configuration allows for real-time data processing and system adjustments. One of the study's key contributions is the utilization of Trajectory Control techniques, which govern the arm's movements through pre-defined paths, ensuring optimal efficiency and accuracy. Furthermore, the study introduces the use of a Smoothing Function to mitigate system over-shoot, thereby enhancing control precision. The research validates its methodologies through a series of tests. Results indicate that the robotic arm successfully navigates to predetermined positions with error magnitudes as low as 2.8587, 5.7340, and 4.4406 in the A, B, and C motor axes, respectively. These outcomes demonstrate the system's potential for high-precision tasks in medical and industrial settings

    Development of a System for Transmitting Medical Data and Diagnostic Images via the Internet for Hospitals in Thailand

    No full text
    This research project aims to advance healthcare data and diagnostic imaging delivery by employing a digital Picture Archiving and Communication System, also known as PACS, alongside a web application that is internet accessible. The study explores two main areas, which are User Interface design and system functionality. The User Interface design merges the aesthetic of traditional paper documentation with the advantages of electronic displays to enhance both readability and overall user experience. The system functionality has been assessed and confirmed to offer secure and efficient transmission of medical diagnostic data as well as radiographic images. By complying with the Personal Data Protection Act of 2019 or PDPA, the system ensures the safe handling of confidential personal information. Test results show that the system meets performance standards and has been well-received by users. The project serves as a timely solution for today's medical industry, focusing on the speed and security of diagnostic data and image transmission

    Application of PID Control System in Mecanum Wheelchair

    No full text
    This research centers on the design and implementation of a control system for an electric wheelchair equipped with Mecanum wheels. The study details a comprehensive research methodology starting with the creation of a block diagram to guide system design, hardware selection, and overall implementation. The electric wheelchair system incorporates power resources, input devices, and energy output mechanisms, utilizing a 24 VDC battery and a joystick with a 10K ohm potentiometer connected to an Arduino Due microcontroller. The operational workflow of the system is defined, enabling the wheelchair to respond to joystick commands for forward, left turn, right turn, and other movements. A PID control system is employed to regulate motor movement, enhancing control precision. The Cohen-Coon tuning method is used to determine the PID controller's gain, ensuring efficient closed-loop control. Results from PID controller experiments under P control and PD control are presented, demonstrating the system's responses for different gain values. Optimal performance is observed with a Kp value of 80 and Kd value of 1.2, showcasing improved response speed, reduced rise time, enhanced setting time, and lower percent overshoot. In conclusion, the combined proportional and derivative control system, specifically with Kp = 80 and Kd = 1.2, proves to be effective in enhancing the Mecanum wheelchair's performance. This study provides valuable insights into precise parameter adjustments for optimal control in Mecanum wheelchair applications
    corecore